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Abstract: A high-resolution air pollutant emission inventory in the Yangtze River Delta 14 

(YRD) region was updated for the year 2017 using emission factors and chemical 15 

speciation mainly from local measurements in this study. The inventory includes 424 16 

NMVOC species and 43 PM2.5 species, which can be subdivided into 259 specific 17 

source categories. The total emissions of SO2, NOx, CO, NMVOCs, PM10, PM2.5, and 18 

NH3 in the YRD region in 2017 are 1,552, 3,235, 38,507, 4,875, 3,770, 1,597, and 2,467 19 

Gg, respectively. SO2 and CO emissions are mainly from boilers, accounting for 49% 20 

and 73%, respectively. Mobile sources dominate the NOx emissions and contribute 57% 21 

of the total. VOC emissions mainly come from industrial sources, occupying 61%. Dust 22 

sources take up to 55% and 28% of PM10 and PM2.5 emissions, respectively. 23 

Agricultural sources account for 91% of NH3 emissions. Major PM2.5 species are OC, 24 

Ca, Si, PSO4 and EC, accounting for 9.0%, 7.0%, 6.4%, 4.6% and 4.3% of total PM2.5 25 
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emissions. The main species of VOCs are aromatics, accounting for 25.3%. OVOCs 26 

contribute 21.9% of total VOC emissions. Toluene has the highest comprehensive 27 

contribution to ozone and SOA formation potentials, and the others are 1,2,4-28 

trimethylbenzene, m,p-xylene, propylene, ethene, o-xylene, ethylbenzene and so on. 29 

Industrial process and solvent use sources are the main sources of ozone and SOA 30 

formation potential, followed by motor vehicles. Among industrial sources, chemical 31 

manufacturing, rubber & plastic manufacturing, appliance manufacturing and textile 32 

have made relatively outstanding contributions. The inventory can provide scientific 33 

guidance for future joint control of air pollutants in the YRD region, China. 34 

Key words: emission inventory; PM2.5 species; VOC species; the Yangtze River Delta 35 

region; air pollutant emissions 36 

1. Introduction 37 

Air pollutant emissions from anthropogenic sources have attracted wide attentions 38 

due to their adverse impacts on air quality (Monks et al., 2009), human health (Guan et 39 

al., 2016; Requia et al., 2018), and climate change (Fiore et al., 2012). Air pollutants 40 

include gaseous compounds, such as sulfur dioxide (SO2), nitrogen oxides (NOx), 41 

carbon monoxide (CO), nonmethane volatile organic compounds (NMVOCs), 42 

ammonia (NH3), etc., and particles with different sizes including PM10 and PM2.5, 43 

whose aerodynamic diameter less than 10 and 2.5 µm. NMVOCs and PM2.5 are 44 

aggregates of various chemical compositions. NMVOCs contains thousands of species 45 

such as alkanes, alkenes, aromatics and oxygenated organic compounds (OVOCs), and 46 

is the key precursor of ozone (O3) and secondary organic aerosols (SOA). PM2.5 is 47 

composed of a complex mixture, including sulfate (SO4
2-), nitrate (NO3

-), ammonium 48 

(NH4
+), organic carbon (OC), element carbon (EC), and various elements, which 49 

degrades visibility and threaten public health (Qiao et al., 2014; Liang et al., 2016). 50 

Emission inventory (EI) is a key fundamental for air pollution source 51 

apportionment, air quality forecasting and decision-making of air pollutant control 52 

measures. In the last two decades, emission inventories have been improved both in 53 
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global and regional scales. According to recently reported inventories, anthropogenic 54 

emissions still show growing trends in global scale (Janssens-Maenhout et al., 2015; 55 

Klimont et al., 2017; Crippa et al., 2018; Hoesly et al., 2018). China’s air pollutant 56 

emission intensity is at a higher level in the world due to the increasing energy 57 

consumption, urbanization and motorization. However, China’s emissions are 58 

undergoing dramatic changes especially in key regions, such as the Jing-Jin-Ji (JJJ), 59 

Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions, with the efforts of 60 

air pollution prevention and control measures in these years (Cai et al., 2018; Zheng et 61 

al., 2018). Updating the EI has become very necessary. 62 

The YRD region is located in East China and covers Jiangsu, Zhejiang, Anhui, and 63 

Shanghai, which has the most intensive economy, population and transportation and 64 

results in its highest emission level in China. According to the new released data by the 65 

Multi-resolution EI for China (MEIC, http://meicmodel.org/), the emission intensities 66 

per unit area of SO2, NOx, NMVOCs, PM2.5, and NH3 in the YRD region are 2.3, 4.5, 67 

5.2, 3.4, and 3.0 times of the national average. We have established an EI for the core 68 

cities in the YRD region in 2007 (Huang et al., 2011). After that, Fu et al. (2013) updated 69 

the EI for Jiangsu, Zhejiang, and Shanghai in the YRD region in 2010. In the last five 70 

years, only individual provinces or part of sources were updated in the YRD region 71 

(Fan et al., 2016; Zhou et al., 2017; Huang et al., 2018a; Wang et al., 2018b; Chen et 72 

al., 2019; Yang and Zhao, 2019). Due to the implementation of air pollution prevention 73 

and control measures, PM2.5 pollution in the YRD region has been significantly 74 

alleviated, and the regional energy, industry and vehicle fleet are undergoing great 75 

changes in recent years (Zheng et al., 2016; Wang et al., 2017a; Zhang et al., 2017a). 76 

Updating the activity levels for detailed sources in the YRD region can help to simulate 77 

air quality and guide emission reduction measures more accurately. 78 

Besides of activity levels, speciation profiles of PM2.5 and NMVOC emissions are 79 

also very important to improve the performance of chemical transport models (CTMs) 80 

in simulating O3 mixing ratios and PM2.5 concentrations. Source profiles from USEPA’s 81 
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SPECIATE database has been commonly used to conduct source apportionment and 82 

create speciated EI for air quality modeling since the 1990s (USEPA, 2009; Simon et 83 

al., 2010). However, emission characteristics of anthropogenic sources have 84 

considerable difference between different regions. Differences in fuel properties, 85 

operating conditions, raw materials, and after-treatment techniques can result in 86 

inconsistent speciation profiles for PM2.5 and NMVOCs. A previous study indicates that 87 

using the speciation profiles from SPECIATE database leads to relatively poor model 88 

performance for trace elements at an urban site in Beijing, China (Ying et al., 2018). 89 

The emission estimates for individual NMVOC species differ between one and three 90 

orders of magnitude for some species when different sets of speciation profiles are used, 91 

which will lead to significant deviations in O3 and SOA simulation (Li et al., 2014; 92 

Zhao et al., 2017; Stroud et al., 2018; Wang et al., 2018c). In view of its importance to 93 

model performance, detailed and observation-based emissions of individual speciated 94 

PM2.5 and NMVOCs have become critical. 95 

In this study, we updated an anthropogenic air pollutant EI in the YRD region for 96 

the year of 2017 using the emission factors (EFs) and PM2.5 and NMVOCs speciation 97 

profiles mainly derived from local measurements. The pollutants include SO2, NOx, CO, 98 

NMVOCs, PM10, PM2.5, and NH3. In addition, 424 individual NMVOC species 99 

including alkanes, alkenes, aromatics, haloalkanes, and OVOCs and 43 PM2.5 species 100 

including OC, EC, ions, and elements were included in the inventory. To obtain detailed 101 

sources of emissions, the EI was refined to 259 specific source categories in 4 levels 102 

based on the fuel types, industrial sectors, equipment types, and emission level, etc. 103 

Finally, the EI was validated using Community Multiscale Air Quality (CMAQ) model 104 

and observations in the YRD region in 2017. 105 

2. Materials and methods 106 

2.1 Domain of this study 107 

The YRD region in this study covers three provinces, including Jiangsu, Zhejiang, 108 

and Anhui provinces, as well as Shanghai municipality. The region has a land area of 109 
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approximately 350,400 km2, accounting for 3.7% of the whole China. However, the 110 

whole region produced a gross domestic product (GDP) of 2,893 billion USD, about 111 

24% of the total national GDP in 2017, and growing at a rate of about 9.3% per year in 112 

the last decade (NBSC, 2018). Correspondingly, the region consumed 717.8 million tce 113 

of energy, about 17% of the national total in 2017. Coal is the main energy type in this 114 

region, contributing about 60% of total energy consumption (NBSC, 2018). The 115 

automobile population reached 40.9 million in 2017, occupying 19.6% of the total in 116 

China. The region also has a high concentration of traditional industries, producing 117 

13.9%, 11.3%, 9.0%, 18.2% and 19.1% of the total products of gasoline, diesel, coke, 118 

cement, and crude steel in China in 2017 (NBSC, 2018). Figure 1 shows the domain of 119 

the YRD region in this study. The waters within the dashed line on the right figure are 120 

China's ship emission control areas. The ship emissions mentioned in this study are the 121 

summary of emissions in this region and inland waters in the YRD region. 122 

 123 
Figure 1. The domain of the YRD region in this study. 124 

2.2 Sources classification 125 

A total of 241 categories of emission sources in 4 levels were divided in this study. 126 

The first level is divided into 9 major sources, including stationary combustion sources, 127 

industrial process sources, industrial solvent-use sources, mobile sources, dust sources, 128 

oil storage and transportation sources, residential sources, waste treatment and disposal 129 

sources, and agricultural sources. The second level has a total of 36 source categories, 130 
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mainly based on combustion facilities and industrial, transportation, residential, and 131 

agriculture sectors. The third-level classification is mainly based on fuel, product and 132 

material types, and contains a total of 127 categories. The fourth-level classification 133 

includes combustion types, emission segments, and control levels. Detailed 134 

classification is shown in Table S1 in the support information. 135 

2.3 Emission estimation methods 136 

The emissions of SO2, PM10, and PM2.5 from stationary combustion sources are 137 

calculated using the mass balance method by Eq. (1) and (2). Other pollutant emissions 138 

are calculated using the EF method, as shown in Eq. (3). 139 

  (1) 140 

  (2) 141 

  (3) 142 

Where, ESO2 and EPM represent the emissions of SO2 and PM10 or PM2.5 (t). S and A 143 

represent fuel sulfur content and ash in fuel (%). F is the fuel consumption (t). Cs and 144 

CA are the conversion efficiencies from sulfur and ash to SO2 and PM (%). Pratio is the 145 

mass percentage of PM10 or PM2.5 in total PM. ηSO2 and ηPM represent the removal 146 

efficiency of SO2 and PM10 or PM2.5. Ei,j represents the emissions of pollutant i from 147 

source j (t). ALj is the activity data of source j, such as fuel consumption, product output, 148 

and raw material consumption, etc. EFi,j is the EF of pollutant i from source j (kg per 149 

activity data). Ηi,j is the removal efficiency of pollutant i from source j. 150 

Emissions from the industrial process sources are calculated using the EF method 151 

shown in Eq. (3). Emissions from industrial solvent-use sources are calculated using 152 

the mass balance method based on the consumption and VOC content of solvents, such 153 

as paints, coatings, inks, adhesives, thinners, etc. A small amount of VOC remaining in 154 

products, wastewater and waste was not considered in this calculation. 155 

For motor vehicles, we use the International Vehicle Emission (IVE) model to 156 

calculate the emissions. However, the EFs and activity data including driving conditions, 157 
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fleet composition, vehicle mileage travels (VMT), and meteorological parameters in the 158 

model were localized via real-world measurements and surveys in this study. Non-road 159 

machinery emissions are estimated with reference to the NONROAD model (USEPA, 160 

2010), which is based on the fuel consumption and fuel-based emission factors. The 161 

amount of fuel consumption is calculated based on the population, working hours and 162 

fuel consumption rate per hour. Ship emissions are estimated using the approach based 163 

on the Automatic Identification System (AIS) data. The detailed method has been 164 

reported by Fan et al. (2016). Civil aviation aircraft source refers to aircraft emissions 165 

under the land take-off (LTO) cycles, which include four operating modes, like 166 

approaching, taxing, taking-off, and climbing. SO2 emission from civil aviation aircraft 167 

source is estimated using mass balance method. The sulfur content in aviation fuel is 168 

0.068%, which is the default value provided in a previous study (Wayson et al., 2009). 169 

NOx, CO, and NMVOC emissions are estimated using the EF method, which multiplied 170 

the fuel consumption rate by the EFs. PM emission is calculated using the FOA3.0 171 

method (Wayson et al., 2009). The rated thrust and working hour of the aircraft in each 172 

LTO mode are referenced to the recommended parameters by the International Civil 173 

Aviation Organization (ICAO). The climbing mode specified by the ICAO refers to the 174 

altitude of about 1 km from the end of take-off to the top of the boundary layer. However, 175 

the height of boundary layer in the actual atmosphere will change with the 176 

meteorological conditions. In this study, a meteorological model (WRF-v3.9.1) was 177 

used to simulate the boundary layer height to correct the time of climbing mode. 178 

Detailed description of the methodology for aviation emission estimation is provided 179 

in our previous study (Wang et al., 2018b). 180 

Emissions from the other sources (dust source, oil storage and transportation 181 

source, residential source, waste treatment and disposal source, and agricultural source) 182 

are all calculated using the EF method. 183 

2.4 Activity data sources 184 

The activity data related to the industrial sources (including stationary combustion 185 
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sources, industrial process and solvent-use sources) of this study are mainly from the 186 

2017 Environmental Statistics Database, which contains the information on fuel 187 

consumption, product output, raw material consumption, and removal technology and 188 

efficiencies. There are nearly 30,000 major point sources in the YRD region in the 189 

database. Considering that environmental statistics do not include all industrial sources, 190 

we take the difference between the total fuel consumption and product output in the 191 

statistical yearbook and the sum of environmental statistics for each city as an area 192 

source. To improve the accuracy of mobile source emissions, a number of local surveys 193 

on the activity data (such as population, vehicle or machine type, fuel type, and 194 

emission standard, etc.) were conducted for motor vehicles, non-road machinery, and 195 

aviation aircrafts. The activity data of ships come from the AIS data for the East China 196 

Sea in 2017. The activity data of area sources are derived from the statistical yearbooks 197 

of cities in the YRD region. For the sources whose activity data are not recorded in the 198 

statistical yearbooks (such as the number of construction sites, civil solvent usage, 199 

catering, biomass burning, etc.), we make some estimations based on statistical data, 200 

such as population, building area, and crop yield, etc. Table S2 in the support 201 

information summarizes the emission estimation methods and activity data sources for 202 

various sources and their reliability levels. 203 

2.5 Determination of emission factors 204 

The EFs of each specific emission source were determined by local measurements 205 

(or surveys) in the YRD region, domestic EI guidebook of China (MEP, 2014), and 206 

those recommended in USEPA’s AP-42 (USEPA, 2002) and European’s EMEP datasets 207 

(EEA, 2013) in turn. To minimize the uncertainty of the EI, this study localizes the EFs 208 

of 80 source categories, which include the majority of anthropogenic emission sources, 209 

such as coal-fired power plants and boilers (Yao et al., 2009; Zhao et al., 2010; Wang 210 

et al., 2011; Lou, 2014; Sun, 2015; Xu et al., 2018), petroleum refining and ferrous 211 

metal manufacturing (Guo et al., 2017), gasoline and diesel vehicles (Huang et al., 2016; 212 

Huang et al., 2017; Huang et al., 2018b; Huang et al., 2018c), non-road machinery (Fu 213 
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et al., 2012; Fu et al., 2013; Ge et al., 2013; Qu et al., 2015; Li et al., 2016), and 214 

emissions from cooking (Wang et al., 2018a; Gao et al., 2019), livestock and poultry 215 

breeding (Chen, 2017; Zhou, 2019), N-fertilizer application (Chen et al., 2017; Xia et 216 

al., 2018), and biomass burning (Tang et al., 2014), etc. The NMVOC EFs for some 217 

evaporation loss sources, like industrial and residential solvent-use sources and oil 218 

storage and transportation sources, are estimated based on the results of field surveys 219 

of some typical sources in the YRD region. For the sources that have not been measured 220 

or investigated, the EFs recommended in the EI guidebook of China (MEP, 2014) are 221 

preferred, followed by the recommended factors in the USEPA’s AP-42 (USEPA, 2002) 222 

and European’s EMEP datasets (EEA, 2013). The EFs for each emission source and 223 

their references are provided in Table S1 in the supporting information. 224 

2.6 PM2.5 and NMVOC speciation 225 

PM2.5 and NMVOC emissions are further split into individual species to simulate 226 

PM2.5 chemical components and O3 mixing ratios in the atmosphere. There are 43 227 

chemical species in PM2.5, including OC, EC, sulfate (PSO4), nitrate (PNO3), 228 

ammonium (PNH4) and 36 elemental components such as Na, Mg, K, Ca, Al, and Si, 229 

etc. Additional species such as particulate water (H2O), noncarbon organic matter 230 

(NCOM), metal bound oxygen (MO), and other unspeciated PM2.5 (PMO) are 231 

calculated according to the method introduced by Reff et al. (2009). There are 424 232 

species of VOCs, including 96 alkanes, 45 alkenes and alkynes, 44 aromatics, 164 233 

OVOCs, 43 haloalkanes, and 32 other organic compounds. 234 

The method for determining the PM2.5 and NMVOC source profiles is similar to 235 

that for EFs. The results of local measurements are prioritized in this study, followed 236 

by domestic measurements in previous studies, and finally the USEPA’s SPECIATE4.4 237 

database (Hsu et al., 2014). To enhance the representativeness of source profiles in the 238 

inventory, the PM2.5 chemical compositions of 34 sources and the NMVOC chemical 239 

compositions of 64 sources were localized according to the measurements in the YRD 240 

region. The source categories of localization for PM2.5 profiles include power plants, 241 

https://doi.org/10.5194/acp-2020-582
Preprint. Discussion started: 17 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 

10 
 

coal-fired boilers, ferrous metal manufacturing, gasoline and diesel vehicles, non-road 242 

machinery, ships, catering, and biomass burning, etc. (Zheng et al., 2013; Tang et al., 243 

2014; Huang et al., 2016; Xu et al., 2018). The localized NMVOC sources include coal 244 

combustion, gasoline and diesel vehicles, ships, catering, biomass burning, and the 245 

majority of industrial process and solvent-use sources, like petroleum refining, coke 246 

production, chemical manufacturing, textile, furniture manufacturing, package and 247 

printing, auto manufacturing, shipbuilding, and architectural coating, etc. (Wang et al., 248 

2014a; Wang et al., 2014b; Wang et al., 2016; Wang et al., 2017b; Wang et al., 2017c; 249 

Huang et al., 2018d; Gao et al., 2019). Detailed information for the references, samples, 250 

and sampling and analytical methods for the sources are represented in Table S3. For 251 

the species which cannot be analyzed by the analytical methods, we supplement the 252 

mass fractions of these species from the SPECIATE database. Figure 2 and Figure 3 253 

show the PM2.5 and NMVOC speciation profiles of major sources in the YRD region, 254 

respectively. 255 
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 256 

Figure 2. The speciation profile of PM2.5 (a) and NMVOCs (b) for major emission sources. 257 

2.7 Spatial distributions 258 

Emissions from industrial sources, including power plants, boilers, industrial 259 

process and solvent-use sources, were allocated based on their latitude and longitude 260 

coordinates from Environmental Statistics Database. Vehicle emissions were 261 

determined based on the mileage sharing of various vehicle types on different levels of 262 

roads. The composition of traffic flow on different levels of roads was obtained from 263 

the surveys in Shanghai and Hangzhou (Huang et al., 2015; Yang et al., 2017). The 264 

approach of spatial allocation for road dust was consistent with vehicle emissions. The 265 

spatial distribution of emissions from non-road machinery varies in different ways 266 

depending on the type of machinery. The emissions from construction and agricultural 267 

machinery were allocated according to the built-up and farmland areas in the 2015 land 268 
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use data released by European Space Agency (ESA) (https://www.esa-landcover-269 

cci.org/). Emissions from port and factory machinery, and airport ground handling 270 

equipment were allocated according to their latitude and longitude coordinates. 271 

Emissions from residential sources were allocated based on 1 km resolved population 272 

distribution data. Those of agriculture sources were allocated based on the farmland 273 

areas in the land-use data. 274 

2.8 Uncertainty analysis 275 

The uncertainty is mainly derived from the activity data and EFs in the EI. In this 276 

study, we classify the coefficients of variation of the activity data and EFs of each 277 

source into seven grades in the range of 2%–100% based on expert judgment. The 278 

coefficient of activity data is determined based on the data source. The environmental 279 

statistic data with individual source information is assigned the lowest coefficient of 280 

uncertainties, while the estimated activity data based on statistical yearbooks such as 281 

biomass burning are assigned the highest values. The EFs derived from local 282 

measurements in the YRD region with large samples are assigned the lowest values, 283 

while those from USEPA’s or European’s datasets are assigned high coefficients. 284 

Detailed analysis method can be found in our previous study (Huang et al., 2011). 285 

3. Results and discussion 286 

3.1 Emission and source contributions 287 

3.1.1 Emissions and their comparisons with previous studies 288 

The total emissions of SO2, NOx, CO, NMVOCs, PM10, PM2.5, and NH3 in the 289 

YRD region for the year of 2017 were 1,552, 3,235, 38,507, 4,875, 3,770, 1,597 and 290 

2,467 Gg, respectively. If ship emissions were not included, the air pollutant emissions 291 

above would be 1,437, 2,936, 38,486, 4,867, 3,754, 1,583 and 2,467 Gg, respectively. 292 

Detailed information of air pollutant emissions for each city is shown in Table S1 in the 293 

Supplement. 294 

Table 1 shows the emissions in the YRD region estimated in this study and their 295 
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comparisons with previous studies. SO2 emissions were close to the result in MEIC 296 

2016, and were much lower than those reported in other studies in the past few years. 297 

Emission reductions on coal-fired facilities including power plants and boilers were the 298 

main reason for the significant decline in SO2 emissions (Zheng et al., 2018). NOx 299 

emissions were generally lower than the results in previous studies. Some modeling and 300 

satellite studies verified that the NOx emissions in previous studies were overestimated 301 

partly due to the failure to consider the improved NOx control measures for power sector 302 

(Zhao et al., 2018; Sha et al., 2019). The NOx emission factors for coal-fired power 303 

plants and boilers in this study were derived from local measurements which were 304 

generally lower than those in previous studies, so the NOx emissions from power sector 305 

were 47% lower than MEIC. CO emissions were higher than MEIC’s results but close 306 

to those reported by Sun et al. (2018a). NMVOC emissions for key sources in this study 307 

were individually estimated base on “bottom-up” method, so the estimates were lower 308 

than the others who used “top-down” approach. Another reason is the majority of 309 

emission factors selected in this study were detailed into different process segments, 310 

which are generally lower than the comprehensive factors for whole industrial sectors 311 

in the previous studies. Since dust sources were not included in MEIC inventory, PM10 312 

and PM2.5 emissions estimated in this study were 1.7 and 0.5 times higher than the 313 

results in MEIC, respectively. A previous study has pointed out that the existing NH3 314 

emissions in China were underestimated mainly due to the underestimate of NH3 315 

emission rates from fertilizer application and livestock and missing of some emission 316 

sources (Zhang et al., 2017). Therefore, we used the local measured NH3 emission 317 

factors for fertilizer application and part of livestock breeding in the YRD region instead 318 

in this study. Another difference came from transportation sector. NH3 emissions from 319 

transportation sector were 2.8 times higher than those in MEIC when localized NH3 320 

emission factors form light-duty gasoline vehicles (Huang et al., 2018) were used in 321 

this study. In addition, NH3 slip from selective catalyst reduction (SCR) devices in 322 

power sector was also considered in this study. However, this emission source has not 323 
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been included in previous studies. 324 

Table 1. Air pollutant emissions in the YRD region in this study and their comparisons with other 325 

studies. 326 

Regions Data source Base year 
Annual air pollutant emissions (Gg/year) 

SO2 NOx CO NMVOCs PM10 PM2.5 NH3 

YRD This study 2017 1437  2936  38486  4867  3754  1583  2467  

 MEIC 2016 1136  3753  19560  5527  1374  1025  1153  

 Simayi et al., 2019 2016    4984     

 Sun et al., 2018a 2015 3050  4160  30210  5490     

 Zhang et al., 2017b 2015       1632  

 Wu et al., 2018 2013    6198     

Shanghai This study 2017 57  225  1393  418  124  56  54  

 MEIC 2016 168  345  1192  683  69  51  25  

 Simayi et al., 2019 2016    728     

 Sun et al., 2018a 2015 550  470  2250  580     

 Zhang et al., 2017b 2015       50  

 Wu et al., 2018 2013    838     

 Fu et al., 2013 2010 260  453   422  86  59  65  

Jiangsu This study 2017 619  1165  17309  2056  1440  577  1093  

 MEIC 2016 468  1586  8191  2128  516  388  532  

 Simayi et al., 2019 2016    2024     

 Sun et al., 2018a 2015 1230  1700  13780  2000     

 Zhang et al., 2017b 2015       703  

 Wu et al., 2018 2013    2240     

 Zhou et al., 2017 2012 1142  1642  7680  1747  1394  941  1100  

 Fu et al., 2013 2010 1126  1257   1759  619  401  976  

Zhejiang This study 2017 339  676  7036  1484  775  308  363  

 MEIC 2016 280  867  3779  1671  219  151  159  

 Simayi et al., 2019 2016    1624     

 Sun et al., 2018a 2015 730  980  5110  1810     

 Zhang et al., 2017b 2015       257  

 Wu et al., 2018 2013    2214     

 Fu et al., 2013 2010 762  1067   1641  301  184  398  

Anhui This study 2017 422  869  12748  910  1415  642  957  

 MEIC 2016 221  954  6398  1045  570  435  437  

 Simayi et al., 2019 2016    608     

 Sun et al., 2018a 2015 540  1010  9070  1100     

 Sun et al., 2018b 2015 434  688     323  422  

 Zhang et al., 2017b 2015       622  

 Wu et al., 2018 2013    906     
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3.1.2 Source contributions 327 

Figure 3 shows the contributions of emission sources divided by different source 328 

categories (a), industrial sectors (b), and mobile source types (c). Detailed information 329 

of the emissions from each source was provided in Table S5. SO2 and CO emissions 330 

were mainly from boilers, accounting for 49% and 73% of the total, respectively. 331 

Notably the emission contributions of power plants were much lower than those in other 332 

inventories (MEIC, http://meicmodel.org/; Zhou et al., 2017), resulting mainly from the 333 

significant reduction in power plant emissions due to the implementation of ultra-low 334 

emission reduction measures in recent years (Wu et al., 2019; Zhang et al., 2019).  335 

Mobile sources dominated the NOx emissions in the YRD region, which 336 

contributed 57% of the total. This estimate was generally higher than the proportion of 337 

mobile sources in MEIC and other inventories (Zhou et al., 2017; Sun et al., 2018a). 338 

Emission control measures for power plants played an important role in reducing their 339 

contributions on NOx emissions. In addition, other studies did not include ship 340 

emissions, which accounted for 16% of NOx emissions from mobile sources in the YRD 341 

region, as shown in Figure 3(c). Another reason that cannot be ignored was the NOx 342 

emission factors from gasoline and diesel vehicles were modified based on local 343 

measurements in this study, which were generally higher than those recommended by 344 

MEP (2014). Some real-world measurements based on portable emission measurement 345 

system (PEMS), on-road chasing, and tunnel experiments also indicate that the NOx 346 

emissions from vehicles in China were higher than expected due to the existence of 347 

high-emitting vehicles (Wu et al., 2012; Huang et al., 2017; Song et al., 2018; Wen et 348 

al., 2019). 349 

VOC emissions were mainly contributed by industrial sources, accounting for 61% 350 

of the total, of which industrial process and solvent-use sources accounted for 34% and 351 

27%, respectively. Mobile and residential sources contributed 20% and 10%, 352 

respectively. Dust sources were main contributors to PM10 and PM2.5 emissions, 353 

occupied 55% and 28%, respectively. Agricultural sources contributed up to 91% of 354 
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NH3 emissions. In addition, residential and mobile sources contributed 3% and 1% of 355 

NH3 emissions, respectively. Although NH3 emission factors from vehicles have been 356 

considered in this study, their NH3 emission was still significantly lower than 357 

agricultural sources. However, vehicle emissions were mainly concentrated in urban 358 

areas, and their contribution to NH3 emissions in urban areas would be considerable. 359 

Industrial SO2 and CO emissions mainly came from five major sectors, including 360 

petroleum refining, coking, chemical manufacturing, non-metallic mineral 361 

manufacturing, and ferrous metal manufacturing. Non-metallic mineral manufacturing 362 

and ferrous metal manufacturing dominated the industrial NOx, PM10, and PM2.5 363 

emissions. The top five sectors of industrial VOCs emissions in the YRD region were 364 

chemical manufacturing, Furniture and wood manufacturing, Appliance manufacturing, 365 

rubber and plastic manufacturing, and non-metallic mineral manufacturing, accounting 366 

for 27%, 12%, 9%, 9%, and 6% of the total, respectively. Chemical manufacturing 367 

contributed the majority of industrial NH3 emissions in the YRD region. 368 

The YRD region has the largest port group in the world, so the emissions from the 369 

transportation of ships and heavy-duty trucks dominate the mobile source emissions. 370 

Among them, ships accounted for 94%, 16%, 12%, and 12% of mobile source SO2, 371 

NOx, PM10, and PM2.5 emissions, and heavy-duty trucks occupied 31%, 37%, and 36% 372 

of mobile source NOx, PM10, and PM2.5 emissions, respectively. Light-duty vehicles 373 

contributed significantly to CO, VOCs, and NH3 emissions, accounting for 61%, 46%, 374 

and 90%, respectively. Non-road machinery accounted for 27%, 18%, 12%, 21%, and 375 

22% of NOx, CO, VOCs, PM10, and PM2.5 emissions from mobile sources, respectively. 376 

Construction and agriculture machinery were major contributors. 377 
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 378 

Figure 3. Source contributions of major air pollutant emissions in the YRD region. (a) Divided by 379 
major source categories; (b) Divided by detailed industrial sectors; (c) Divided by detailed mobile 380 

sources. 381 
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3.1.3 Spatial distribution 382 

Fig. 4 shows the spatial allocation of SO2, NOx, CO, NMVOCs, PM2.5, and NH3 383 

emissions in the YRD region. SO2 emissions were mainly concentrated in the Yangtze 384 

River and East China Sea estuary, where ships were densely populated. SO2 emissions 385 

along the Yangtze River and in the cities of northern Anhui and Jiangsu provinces were 386 

also dense, mainly from power plants and boilers in these regions. The spatial 387 

distribution of NOx and NMVOCs was similar, mainly concentrated along the Yangtze 388 

River and Hangzhou Bay, where the industries and logistics were most developed. CO 389 

and PM2.5 emissions were mainly concentrated in the built-up areas of cities due to 390 

intensive road traffic and human activities such as construction sites. NH3 emissions 391 

were relatively high in northern Anhui and Jiangsu provinces, resulting mainly from 392 

their developed agriculture. The contribution of NH3 emissions from residential and 393 

mobile sources has led to higher NH3 emission densities for large cities such as 394 

Shanghai. 395 

 396 

Figure 4. Spatial distribution of major air pollutant emissions in the YRD region. (a)~(f) refer to 397 
SO2, NOx, CO, VOCs, PM2.5, and NH3 in turn. 398 

Figure 5 shows the spatial distribution of major industrial sectors of NOx and 399 
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VOCs emissions in the YRD region. There were large differences in the spatial 400 

distribution of different industrial sectors. The power plants were mainly distributed 401 

along the Yangtze River and Hangzhou Bay and the northern part of the YRD region. 402 

The iron & steel manufacturing sector was concentrated along the Yangtze River. 403 

Cement and brick manufacturing sectors were mainly distributed in the western and 404 

northern regions of the YRD. In comparison, the key sectors of VOC emissions (Figure 405 

5(e)~(l)) were mainly concentrated in the central and eastern regions of the YRD, 406 

including Shanghai, Suzhou, Wuxi, Changzhou, Nanjing, Hangzhou, Ningbo, Jiaxing, 407 

and Shaoxing, etc., which also had the strongest NOx emission intensities in the YRD 408 

region. High intensities of NOx and VOC emissions are the key factors leading to 409 

serious pollution of ozone and secondary particulate matter in this region (Li et al., 2018; 410 

Li et al., 2019). Refining the specific industrial sectors of emissions can help to find out 411 

the detailed sources inducing air pollution. 412 

 413 
Figure 5. Spatial distribution of major NOx and VOC emission sources in the YRD region. 414 
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3.1.4 Uncertainty assessment 415 

The inventory was compiled using a “bottom-up” approach based on local 416 

emission factors and activity data in the region. The activity data of industrial sources, 417 

including fuel consumption, sulfur content, ash content, raw material used, and control 418 

efficiency, were collected from Environmental Statistics Database. Emission factors 419 

from some key sources, such as coal-fired power plants and boilers, iron & steel 420 

manufacturing, gasoline and diesel vehicles, non-road machinery, catering, and 421 

agricultural sources, etc., have been modified based on the local measurements. These 422 

all help to reduce the uncertainty of the emission estimates. Table 2 shows the 423 

uncertainties of major sources at the 95% confidence interval in this inventory. The 424 

average uncertainties of emissions from the YRD region were estimated as -29 to 36% 425 

for SO2, -28 to 33% for NOx, -42 to 75% for CO, -44 to 68% for NMVOCs, -36 to 62% 426 

for PM10, -30 to 46% for PM2.5, and -58 to 117% for NH3. The uncertainty of this 427 

inventory was reduced compared to our previous inventory for the YRD region (Huang 428 

et al., 2011).  429 

The uncertainty assessment indicates that the stationary combustion sources 430 

including power plants and boilers were more reliable, because the emissions were 431 

estimated based on the detailed activity data and local measurements. The uncertainties 432 

of major industrial sectors, such as ferrous metal manufacturing, non-ferrous metal 433 

manufacturing, and non-metallic mineral manufacturing, were greatly improved when 434 

using detailed emission estimation approach for different process segments. In 435 

comparison, the emissions from chemical manufacturing still have large uncertainties 436 

since there are a large number of process segments and unorganized emissions. The 437 

uncertainties of emissions from vehicles and non-road machinery in this study mainly 438 

came from the activity data. Although their population could be obtained from the 439 

statistical yearbooks, their mileage travels or working hours were still difficult to 440 

estimate accurately. Dust emissions including construction and road dust have much 441 

higher uncertainties due to less information of their activity data and emission factors 442 
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was available. Most of the area sources, like residential and agricultural sources, were 443 

estimated based on the activity data from statistical yearbooks, resulting in higher 444 

uncertainties of their emission estimates. Overall, using of emission estimation 445 

approach based on refined process segments and local measurements can help to reduce 446 

the uncertainties of EI. However, more detailed activity data and accurate emission 447 

factors are still very critical to improve the EI in the future. 448 

Table 2. Uncertainty assessment of major emission sources in the YRD region. 449 

Sources SO2 NOx CO NMVOCs PM10 PM2.5 NH3 

Power plants (-25%, 28%) (-33%, 15%) (-26%, 27%) (-28%, 22%) (-24%, 29%) (-25%, 28%) (-45%, 76%) 

Boilers (-29%, 38%) (-23%, 27%) (-24%, 30%) (-19%, 23%) (-24%, 30%) (-24%, 30%) (-46%, 56%) 

Petroleum refining (-49%, 84%) (-45%, 72%) (-51%, 90%) (-40%, 57%) (-53%, 60%) (-53%, 64%) (-39%, 62%) 

Chemical manufacturing    (-71%, 167%)    

Ferrous metal manufacturing    (-41%, 61%) (-23%, 48%) (-12%, 34%)  

Non-ferrous metal manufacturing (-37%, 78%) (-42%, 62%)  (-44%, 70%) (-38%, 60%) (-52%, 94%)  

Non-metallic mineral manufacturing (-48%, 75%) (-46%, 71%) (-47%, 72%) (-45%, 69%) (-44%, 74%) (-43%, 68%)  

Vehicles  (-38%, 55%) (-48%, 73%) (-46%, 69%) (-50%, 83%) (-44%, 67%) (-55%, 98%) 

Non-road machinery (-47%, 75%) (-44%, 66%) (-57%, 112%) (-50%, 86%) (-46%, 76%) (-45%, 77%)  

Construction dust     (-56%, 104%) (-57%, 102%)  

Road dust     (-35%, 71%) (-43%, 68%)  

Oil storage and transportation sources    (-43%, 69%)    

Residential solvent-use    (-57%, 116%)    

Residential combustion (-64%, 143%) (-44%, 79%) (-70%, 88%) (-68%, 165%) (-43%, 66%) (-43%, 66%) (-44%, 72%) 

Biomass burning (-66%, 171%) (-62%, 124%) (-67%, 153%) (-65%, 142%) (-66%, 149%) (-66%, 152%) (-68%, 159%) 

Livestock and poultry farming       (-67%, 148%) 

Fertilizer application             (-78%, 213%) 

Overall (-29%, 36%) (-28%, 33%) (-42%, 75%) (-44%, 68%) (-36%, 62%) (-30%, 46%) (-58%, 117%) 

3.2 PM2.5 and VOC species emissions 450 

3.2.1 PM2.5 species 451 

Figure 6 shows the emissions and source contributions of major PM2.5 species in 452 

the inventory. OC, Ca, Si, PSO4, and EC were top five components in primary PM2.5 in 453 

the YRD region, accounting for 9.0%, 7.0%, 6.4%, 4.6%, and 4.3% of PM2.5 emissions, 454 

respectively. There were large differences in the emission contributions of different 455 

PM2.5 species. Among the industrial sources, non-metallic mineral manufacturing 456 

sector had largest contributions to Ca, Si, and Al emissions, accounting for 51.6%, 457 
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15.9%, and 18.8% of these species, respectively. Ferrous metal manufacturing was the 458 

main source of Fe emissions, accounting for 57.9%. Vehicles was major contributors to 459 

OC and EC emissions, taking up 18.0% and 43.5%, respectively. K and Cl emissions 460 

mainly came from biomass burning, accounting for 50.4% and 78.5%, respectively. 461 

Construction dust was also an important source of PM2.5 components, accounting for 462 

15.9%, 34.1% and 20.4% of Ca, Si, and Al emissions, respectively. 463 

 464 
Figure 6. Emissions and source contributions of major PM2.5 species in the YRD region. 465 

3.2.2 VOC species 466 

Figure 7 shows VOC species emissions and their source contributions. The 467 

aromatics dominated the VOC species, accounting for 25.3% of the total VOC 468 

emissions in the YRD region, followed by the alkanes, occupying 24.7%. Among them, 469 

the straight-chain, branched, and cycloalkanes took up 11.9%, 9.9%, and 2.8%, 470 

respectively. OVOCs also accounted for a considerable proportion of VOC emissions 471 

in the YRD region, about 21.9% of the total. Among them, the aldehydes, ketones, 472 

alcohols and esters took up 5.0%, 4.4%, 9.0% and 3.5%, respectively. In addition, the 473 

haloalkanes occupied about 3.1% of the total VOC emissions. The aromatics were also 474 

dominant species in VOC emissions in the YRD region in a previous study reported by 475 

Wu et al. (2017), even higher (40%) than the proportion in ours. The proportion of 476 

OVOCs was quite close to our study, while the proportion of alkenes and haloalkanes 477 

were generally lower than ours. 478 
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The chemical manufacturing accounted for a considerable proportion of various 479 

VOC species in the YRD region, accounting for 12.7%, 21.5%, 13.7%, and 10.8% of 480 

the alkanes, alkenes, aromatics, and OVOC emissions, respectively. Industrial solvent-481 

use sources, including furniture and wood processing, textile, package and printing, 482 

pharmaceutical manufacturing, metal products, auto manufacturing, and appliance 483 

manufacturing, etc., were also an important source of VOC emissions in this region, 484 

which occupied 29.3% and 33.3% of the aromatics and OVOC emissions, while 485 

residential solvent-use sources accounted for 23.7% and 4.9% of the aromatics and 486 

OVOC emissions in the YRD region. Motor vehicles also have a very important 487 

contribution to various VOC species in the YRD region, occupying 31.2%, 10.4%, 488 

15.1%, and 10.5% of the alkanes, alkenes, aromatics, and OVOC emissions in the 489 

region. Biomass burning contributed 12.0% of the aldehyde emissions, although it 490 

accounted for only 2.5% of the total VOC emissions in the region. 491 

Overall, the refinement of VOC source profiles can help to provide an important 492 

support for assessing the impacts of VOC emissions on ambient air quality in the region. 493 

However, there are still considerable differences of VOC composition in different 494 

studies. It is necessary to strengthen the verification of VOC species emissions in the 495 

future. 496 

 497 

Figure 7. Emissions and source contributions of major VOC species in the YRD region. 498 
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3.3 Model validation 499 

To verify the reliability of the emission inventory, we used the Community 500 

Modeling and Analysis System (CMAQ version 5.3) to simulate the concentrations of 501 

SO2, NO2, PM2.5, PM10, O3, and CO in the YRD region in January and July 2017, and 502 

compared with the observation data in each city of the region. The Weather Research 503 

and Forecast (WRF) version 3 supplied the meteorological field for CMAQ model. The 504 

emission inventory developed in this study was used to produce the emission system in 505 

the YRD region while emission beyond YRD was supplied by Multiresolution Emission 506 

Inventory for China (MEIC-2016) (http://www.meicmodel.org). The anthropogenic 507 

data was then combined with the biogenic data from Model for Emissions of Gases and 508 

Aerosol from Nature (MEGAN version 2.10) as the final input of emission inventory 509 

for the model. Figure S1 and Table S6 show the domain and settings of model system, 510 

respectively. Detailed information is provided in the Supporting information Section 6. 511 

Figure 8 compares the simulated concentration for SO2, NO2, PM2.5, PM10, O3, and 512 

CO in January and July 2017 in the YRD region with those of the observation data. The 513 

simulated concentration distribution of various pollutants is consistent with the 514 

observation results, which indicates the updated inventory generally reflects the 515 

distribution of air pollution sources in the YRD region. Comparatively, the consistency 516 

between the simulated concentration distribution and the observed results of the cities 517 

in the central areas of the YRD region is stronger than those of the northern and southern 518 

border areas. This is mainly because the concentration in the border areas is more 519 

susceptible to the effects of emissions from the outer areas, which leads to greater 520 

simulation results deviation. Detailed statistical results of the model performance for 521 

simulating various pollutants in each city is shown in Table S7 of the supporting 522 

information. Overall, the simulation results of O3 were relatively high in January, while 523 

SO2, NO2, PM2.5, PM10, and CO were relatively low. While in July, except that the O3 524 

simulation concentrations were slightly higher than the observed results, the average 525 

NO2 simulation values were consistent with the measured averages, other pollutants 526 
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were relatively lower. 527 

 528 

Figure 8. Comparisons of simulated and observed (circles) monthly average concentrations of 529 
SO2, NO2, daily maximum 8-hour of O3 (O3_8h), PM2.5, PM10, and CO in cities in the YRD region 530 

in January and July 2017. 531 

3.4 Ozone and SOA formation potentials 532 

To characterize the regional ozone and SOA formation contributions of different 533 

VOC species and their sources, we used ozone formation potential (OFP) and SOA 534 

formation potential (SOAP) methods to estimate. OFP and SOAP are the sum of 535 

individual VOC species emissions multiplied by maximum incremental reactivity (MIR) 536 

and SOA yield, respectively. The MIR and SOA yield of individual VOC species was 537 

referenced from previous studies (Carter, 1994; Wu and Xie, 2017). 538 

Figure 9 shows the OFP and SOAP contributions from major VOC species, 539 

emission sources, and industrial sectors in the region. In terms of individual species, 540 

toluene is the most important species for both OFP and SOAP, which contributed 45.0% 541 
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of the total (7.5% OFP and 37.5% SOAP), followed by 1,2,4-trimethylbenzene, 542 

contributing 29.1% of the total (2.1% OFP and 27.0% SOAP). Others were m/p-xylene, 543 

propylene, ethene, o-xylene, ethylbenzene, etc., their contributions to both OFP and 544 

SOAP were 14.9%, 16.6%, 10.7%, 5.7%, and 2.7% in turn. Their OFP contribution was 545 

relatively more prominent. 546 

Industrial process sources dominated the OFP and SOAP in the region, which 547 

contributed 44.9% and 26.7%, respectively. Industrial solvent-use sources followed, 548 

with OFP and SOAP contributions of 15.0% and 33.8%, and their contribution to SOAP 549 

even exceeded the industrial process sources. The contributions of motor vehicles to 550 

regional OFP and SOAP were 13.9% and 13.5%, respectively, which was close to those 551 

from residential solvent-use sources. These two sources were major contributors of 552 

ozone and SOA formation in urban areas. 553 

There are four major industrial sectors with significant potential contribution to 554 

ozone and SOA production in the YRD region. The chemical manufacturing sector 555 

contributed 16.4% and 14.8% of OFP and SOAP, respectively. The second was rubber 556 

& plastic manufacturing sector, with a SOAP contribution rate of 11.8%, while its OFP 557 

was relatively low, about 1.2%; the third and fourth were appliance manufacturing and 558 

textile sectors, accounting for 10.5% and 10.4% of both OFP and SOAP contributions. 559 

Based on the above, it can be concluded that the reduction of aromatic emissions 560 

from industrial and vehicular sources were of vital importance for the YRD region, 561 

especially for the high reactivity species, such as toluene, xylene, and trimethylbenzene, 562 

etc., which should be the top priority on VOCs pollution control in the region. 563 
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 564 

Figure 9. Ozone and SOA formation potentials from different (a) VOC species, (b) emission 565 
sources, and (c) industrial sectors. 566 

https://doi.org/10.5194/acp-2020-582
Preprint. Discussion started: 17 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 

28 
 

4. Conclusions 567 

A high-resolution air pollutant emission inventory in the YRD region was updated 568 

using emission factors mainly from local measurements in this study. In addition to the 569 

conventional pollutants, 424 NMVOCs and 43 PM2.5 components were also included. 570 

Source categories were divided into 4 levels and 259 specific sources. The results 571 

indicate that the total emissions of SO2, NOx, CO, NMVOCs, PM10, PM2.5, and NH3 in 572 

the YRD region in 2017 are 1,552, 3,235, 38,507, 4,875, 3,770, 1,597, and 2,467 Gg, 573 

respectively. Overall, the SO2 and NOx emissions estimated in this study are lower than 574 

the existing EIs such as MEIC. The substantial reductions in power plants and boilers 575 

in recent years are the main reason. The VOC emissions is also slightly lower than the 576 

results of the previous studies, which is mainly due to the fact that this study uses 577 

emission factors refined to the process segments, which are usually lower than the 578 

comprehensive emission factors. Due to the consideration of dust sources, PM10 and 579 

PM2.5 emissions are 1.7 times and 0.5 times higher than MEIC, respectively. The NH3 580 

emissions of this study are estimated using localized emission factors, and the results 581 

are significantly higher than those of previous studies. 582 

SO2 and CO emissions are mainly from boilers, accounting for 49% and 73% of 583 

the total. Mobile sources dominate the NOx emissions from anthropogenic sources in 584 

the YRD region, accounting for 57% of the total. VOC emissions mainly come from 585 

industrial sources, accounting for 61%. The main industrial sectors are chemical 586 

manufacturing and solvent-use sources like furniture manufacturing, appliance 587 

manufacturing, textile, package and printing, and machinery manufacturing. 55% and 588 

28% of PM10 and PM2.5 come from dust sources, respectively. Agricultural sources 589 

account for 91% of NH3 emissions. 590 

Major PM2.5 species emitted from anthropogenic sources in the YRD region are 591 

OC, Ca, Si, PSO4 and EC, which account for 9.0%, 7.0%, 6.4%, 4.6% and 4.3% of total 592 

primary PM2.5 emissions. The main species of VOCs are aromatics, accounting for 593 

25.3%. OVOCs also occupy a relatively high proportion, accounting for 21.9%. Among 594 
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them, aldehydes, ketones, alcohols, and esters account for 5.0%, 4.4%, 9.0% and 3.5%, 595 

respectively. Toluene has the highest comprehensive contribution to ozone and SOA 596 

formation potentials, and the others are 1,2,4-trimethylbenzene, m,p-xylene, propylene, 597 

ethene, o-xylene, ethylbenzene and so on. Industrial process and solvent use sources 598 

are the main sources of ozone and SOA formation potential, followed by motor vehicles. 599 

Among industrial sources, chemical manufacturing, rubber & plastic manufacturing, 600 

appliance manufacturing and textile have made relatively outstanding contributions. 601 

In recent years, the ambient air quality in the YRD region has improved 602 

significantly. At the same time, the contributions of air pollutant emissions have also 603 

been subtly changing in these years. The emissions of primary pollutants such as SO2 604 

and NOx from power plants and boilers have dropped significantly, but the contribution 605 

of mobile sources has become increasingly prominent, and the emissions of reactive 606 

organic compounds from industrial sources are still at a high level, resulting in 607 

outstanding secondary pollution issues. We hope that the EI in detailed sources and 608 

species established in this study can provide scientific guidance for future joint control 609 

of air pollutants in the YRD region, China. 610 
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